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Experimental control of a chaotic point process using interspike intervals

G. Martin Hall, Sonya Bahar, and Daniel J. Gauthier
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A physical point process generated by passing a continuous, deterministic, chaotic signal through an
integrate-and-fire device is controlled using proportional feedback incorporating only the time intervals be-
tween events. This system is unique in that the mean time between events can be adjusted independent of the
dynamics of the underlying chaotic system. It is found that the range of feedback parameters giving rise to
control as a function of the mean firing time exhibits surprisingly complex structure, and control is not possible
when the mean interspike interval is comparable to or larger than the underlying system memory time.
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PACS numbgs): 05.45+hb, 07.05.Dz, 84.30.Ng, 87.16e

Many systems evolve such that long periods of inactivitywhere the time interval between spikes is given fy, ;
are punctuated by brief, nearly identical bursts of activity.=t,,,;—t,. The offset¢ ensures that the argument of the
Typical examples of such systems include certain laser instantegral is positive definite when the dynamical system is in
bilities [1] or a spontaneously firing collection of neurons the neighborhood of the desired stabilized state. The inter-
[2]. Such “point processes” may be characterized by thespike intervalsT,, constitute a point process, derived from
sequence of time intervals between eveimerspike inter-  the underlying systers(t).
vals, or ISI'9 rather than a dynamical variable sampled at Our goal is to convert the chaotic sequence of ISI's to a
regular time intervals. In some instances, the ISI's fluctuatgeriodic sequence by applying small perturbations to an ac-
in a deterministically chaotic manner. For example, Wit-cessible variable or parameter of the underlying system using
kowski et al. [3] have suggested that the interbeat intervalsa proportional feedback algorithm. We note that there exist
recorded from a fibrillating heart are chaotic. Since the octwo types of signals(t) giving rise to a periodic sequence
currence of chaos often degrades the performance of device$ ISI's. One is a constant signadenoted bys*) giving rise
or indicates disease, it is valuable from a clinical as well as ao a period-1 sequence whefé =0/(s* + ¢). For this sig-
fundamental standpoint to investigate the implementation ofal, the sequence of ISI's remains periodic even when the
chaos control[4] of point process generated by various parameters of the underlying dynamical system or the
mechanisms. integrate-and-fire device change slights.g., from param-

Recently, Carrol[5] studied experimentally a system that eter drif). The other type of signal is a periodic wave form,
naturally produces pointlike events: a network of fourgenerating a periodic sequence of ISI's only wi@rand ¢
coupled electronic circuits whose individual dynamics areare tuned precisely. Extremely small parameter changes will
governed by equations similar to the FitzHugh-Nagumorender this sequence quasiperiodic. Therefore, only the con-
model of a neuron. He demonstrated that the dynamics of thgnuous signal, corresponding to a period-1 periodic se-
network can be controlled using proportional feedback incorquence of events, can be obserfadd hence stabilizedn
porating the ISI's where the mean ISI tidenoted byT*)  an experimental setting.
is set approximately by the inverse of the decay rate of a

“slow” variable. In a separate investigation, Ding and Yang (a) continuous|  [integrate .
[6] demonstrated theoretically control of a point process gen- g =g chaotic 4  and n
erated by passing a continuous chaotic signal through a system fire _I_I:I_L
threshold-crossing device using a similar feedback protocol. th tp
In this case,T* is set approximately by the characteristic en = (T T+ T9)
time scale of the chaotic fluctuations of the underlying dy-
namical system. (b) >

In this article, we investigate experimentally the control 4178, =
of a point process generated by passing a continuous signal V. R'd\/\/ V.
s(t)=n"y(t) from a chaotic electronic circuit through an ! e 2 L
integrate-and-fire device as shown schematically in Rig\, 1 R, D ] —_— | JI
wherey is the state vector of the circuit andis the mea- - gl T~
surement direction in phase space. The device generates & Cq C| Rs
chaotic sequence of spikes when the value of an integral T

reaches a threshol@, determined recursively from
FIG. 1. (a) Scheme for controlling a chaotic series of interspike
thi1 intervals using negative feedback where the intervals are generated
f [s(t)+ ¢]dt=0, (1) by passing a signal from a continuous chaotic system through an
th integrate-and-fire devicéb) Chaotic electronic circuit.
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FIG. 2. (a) Projection in phase space of the chaotic attractor of the electronic circuit shown inlBighl Reconstruction of the chaotic
attractor using the interspike intervals.

Our experimental system differs from those of Carf6ll  the closed-loop feedback signals that attempt to stabilize the
and Ding and Yang6] in thatT* can be adjusted arbitrarily system about its fixed points. We denote the circuit state
independent of the time scales characterizing the underlyingector in phase space lyy=(V,,V,,1)".
chaotic system. We note that Sa{iéf has demonstrated that  The circuit displays “double scroll” behavior as shown in
an ISI sequence such as that generated from{Baontains  Fig. 2(a) for R,=1.07 (kept fixed throughout this stugiand
all information necessary to reconstruct the topology of theg,=0, where the unstable steady states at the center of the
underlying chaotic system for an arbitrary settindgféf This  “scrolls” with coordinates =y* and 0 are indicated. Our
suggests that control might be possible for some range dahsk of stabilizing a periodic sequence of ISI's corresponds
experimental parameters. On the other hand, Racicot an stabilizing the dynamics of the underlying system about
Longtin [8] recently observed that nonlinear forecastabilityone of these fixed points. The most unstable eigenvalues
of the system dynamics is lost whéff is comparable to or characterizing the fixed pointsy* are given by\} =0.95
larger than the characteristic memory time of the underlying+i5.88 as determined experimentally by observing the dy-
system, where the memory time is given approximately byhamics of the system in a neighborhood of the fixed points.
the inverse of the largest positive Lyapunov exponent. WeFor future reference, the “memory time” corresponding to
provide experimental evidence that this loss of forecastabilthese states is given approximately fy= 1/Re(\¥)=1.05.
ity dramatically |Im|tS the ablllty to control the chaotic dy- Figure 4b) shows an experimenta| reconstruction of the
namics. In addition, we show that the range of feedback pas.o-tor from the ISI's withn=(1,0,0)", ¢=1.84, and®

rarrr]]%t_ters fort \_/vhul:htconttrol is effective as a functionTof =0.56, where the three possible ISI's corresponding to the
ex%h;sunnodne::v:ﬁ Sc:rl:;outirc? .s stem is an electronic circuitperiOdiC sequence: andTg (corresponding to"y* and0
ying y of the underlying systejrare indicated. The ISI's are deter-

consisting of a negative resist®, and passive linear and mined by measuring/,(t) with a high-impedance voltage

npnlinear components connfected as shown schemgtically Wllower summing this voltage with an adjustable offset
Fig. 1(b). The dynamics of this system are well descripafi voltage ¢, and feeding the combined signal to an analog

by the set of dimensionless equations electronic integrator whose value is monitored by a Schmidt
_ _ _ trigger that fires when the threshofdl is crossed, and then
V1 /dt=V1 /Ry =g[V1= Vol s, 3 esets. An analog time-to-voltage converter is initialized by
the firing of the Schmidt trigger. The value of this converter
is sampled and held at a value proportionalltpwhen the
Schmidt trigger fires at the next threshold-crossing event,
and is then reset. This process is repeated to determine the
. next ISI while the previous valu€,_1 is transferred to aux-
where V, and V; are the voltage drops across capacitorsjjigry sample-and-hold device. It is seen that the attractor
C,=45 nF andC,=45 nF, respectively, andis the current nqergoes some deformation during the reconstruction, but
flowing through the inductot =252 mH. In Eq.(2) and in  general topological features appear to be preserved, consis-
the following, all voltages are normalized to the diode VOIt-tant with the work of Saudi7].
ageVy=0.8 V, all currents td 4=(V4/R)=0.34 mA forR We control the sequence of ISI's by perturbing an acces-
=L/C;,=2.37 K}, all resistances tR, and time to7  gjple system parameter using a standard closed-loop feed-
=LC;=1.06 ms. The current flowing through the parallel pack protocol given by
combination of the resistor and diodégpe 1N914B is de-
noted by g[V]=(V/Ry)+I[exp@aV)—exp(-aV)], where en=y1(Tn=T*)+ ¥2(To1 = T%), @3)
Ry=3.4,1,=1.64x 10 ° is the reverse current of the diodes,
and a=11.6. The other circuit parameters ®g=R, +R;  wherey; (j=1,2) are gain parameters. Note that the pertur-
=0.195, whereR =0.041 is the dc resistance of the induc- bations vanish when the system is stabilized about the de-
tor, and R;=0.154 is a resistor placed in series with thesired statel,,=T,_,=T*. For simplicity, we consider only
inductor. The elements of the vectgr,=(q;,d,,9s)" are adjustments to the current injected into te node of the

de/dtzcl(g[Vl_Vz]_I)/C2+q2, (Zb)

dl/dt:VZ_Rm|+q3, (ZC)
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FIG. 3. Experimentally observe(illed circles and theoreti- . ) . .
cally predicted(solid lines domains of control fofa) ¢=—0.61, FIG. 4: Experl_me_ntally obse_rvedllled circles and theoreti-
and (b) ¢=0.24. The memory time of the unstable fixed point is @y Predicted(solid lines domains of control foxa) y,=—0.26

given by r,,=1.05 (corresponding to 1.11 ms in physical upits ~ MA/MS, and(b) y,=1.32 mA/ms for¢=0.24. Compare these fig-
ures to Fig. 8) with y,=0 and the same value @f.

underlying electronic circuit so that,= (¢,,0,0)". We note
that a protocol similar to that desribed by E) has been
used to control the dynamics of biological systems such as
the hear{4] and brain[10].
Our primary goal is to determine the range of values ofwhere the eigenvalue= 1/r, is real and positive and,, is
T* for which control is possible when the parameters of thethe feedback signal at firing timg,. The goal of the feed-
underlying dynamical system remain fixed. This range camack perturbations, given by E(), is to stabilize the sys-
be visualized quickly by plotting the domain of values of thetem to its fixed poins* =0 using only the ISI's generated by
feedback parametey, that successfully stabilize the desired the protocol given in Eq(1).
periodic sequence as a function®f (the “domain of con- The stability analysis is simplified considerably by devel-
trol”) for various values of the remaining feedback andoping a map-based description of the system in the presence
integrate-and-fire parameters. For brevity, we only considesf feedback, which allows us to predict its evolution from
stabilization of the statg* with ﬁ=(1,0,0)T (corresponding firing time t,, to the next firing timet,,;. Such a mapping
to s*=0.79). We have verified that our main conclusionscan be obtained by integrating E¢l) over a single ISI,
described below are not affected by this choice. inserting this result into the integrate-and-fire proto¢b),
Figure 3 shows the measured domain of contsullid and by considering only small deviation8T,=T,—T*
dotg for two values of the offseth with y,=0, where® is

dg/dt=As+eg,, 4

adjusted to obtain the desired valueTd. It is seen that the 6

shape of the domains stretches in the vertical dimension such @ 9=
that the gain required to maintain control increases with in- controlled

creasing¢. In addition, the domains are quite complex in & 41

that there exist multiple, isolated domains, although these <

may be simply connected when considering the full space of 2 5] ncontrolled

parameters spanned by, v, ¢, and® [11]. Of consider-
able interest is the observation that control is not possible
beyondT* ~0.64r,, and that this maximum value is rather 0 T T T T T
insensitive to the value of the offset. Similar behavior is 0.0 02 04 06 08 1.0
observed for other values @f. 6
Figure 4 shows the effects of adding information from the (b)
previous ISl into the control protocol; the solid dots indicate
the measured domain of control for various values of the 4 1
gain parametery, with ¢=0.24. Inclusion of this informa-
tion shifts the domain of control along both tA& and vy,
axes, in some cases limiting the range to very small values of uncontrolled
T*. However, in no case explored in the experiment have we
observed control beyon@* ~0.77,,, (only a slight increase 0 T T T T T - T T
beyond what is observed with,=0). 00 02 04 06 08 10 12 14 16
It is possible to motivate theoretically some of our obser- Th
vations by considering the case of a 1D unstable system "
whose dynamics in the presence of closed-loop feedback is FIG. 5. Theoretically predicted domain of control from the
governed by simple 1D model foa) y,=0, and(b) y,/\%¢=0.25.

9,1*9=0.25

controlled
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about the desired ISI. We find that the dynamics of the sysFor y,=0, we find that control is not possible beyond pre-

tem is described approximately by the mapping cisely T* = 7,,; for y,#0, control is not possible beyond
T*=1.6r,, which occurs wheny,=0.25. This demon-
Sn+1/ ¢ expAT*) 0 -—c strates that the mean firing time must be less than or on the
SThiN |=|cC 0 CH+AT* order of the memory time of the system, consistent with our

% experimental observations in the higher-dimensional system.
enr1/h¢ Gy Gz (CHATH)G, It is seen, however, that the domains shown in Fig. 5 exhibit
s,/ ¢ structure that is simpler than that observed in the experiment.
Indeed, the simple theoretical analysis gives only a qualita-
x| OTnk 1, (5 tive guide to what we find experimentally.

en/Nd Our analysis may be extended to higher dimensions to

) describe completely the dynamics of the circuit with closed-

wheres,=s(ty), Gj=7;/\"#, andc=1-expAT*). Equa-  |gop feedback in the neighborhood of the fixed point. In

tion (5) is valid under conditions when the system is in agnalogy to Eq(4), consider aM-dimensional system whose
neighborhood of the fixed point such th&f<¢, e,<A¢,  dynamics is governed by

and 6T, <T*.
The periodic sequence of ISI's, and hence the fixed point dy/dt=F(y)+q,, (6)
of the underlying system, is stabilized by the feedback if and R .
only if all the eigenvalues of the matrix in Eq5) have whereF is the nonlinear flowg,=qge,, andq is the feed-
magnitude less than one. The domaiegion of control can  back direction. The goal of the feedback is to stabilize a
be determined by direct computation of the eigenvalues operiodic sequence of ISI's, and hence an unstable fixed point
application of the Schur-Cohn stability criterion. It is inter- y* =F(y*) of the underlying continuous system. As before,
esting to note that the offset does not play a role in the the stability analysis is simplified by developing a mapping
stability of the system other than rescaling the gain paramef the dynamics. Following a procedure similar to that de-
eters, consistent with our experimental observations. scribed above and considering only small deviatiggs y,
Figure 5 shows the theoretically predicted domains of—y* about the fixed point, we find that the dynamics is
control for two values of the feedback gain parametgys  described approximately by the mapping

Xni1/¢b expAT™) 0 —(1-eATn+1)A™ g Xq/
SThiN* | =] ATA-IN*C 0 nNT(C+A™IT*)(\*A~H7g STaN* |, (7
ent1/N\* ¢ ﬁT)\*AflCGl G, ﬁT(C_i_AflT*)()\*Afl)ZaGl e I\* ¢

whereA=9F/dy is the Jacobian of the nonlinear flow evaluated at the fixed pGiatl —exp@AT*), | is theM XM identity
matrix, and\* is the real part of the largest eigenvaluefaf For our experimental system, the Jacobian is given by

1/Rn_g,[V’1cn_ ;n] g,[vfn_ ;n] 0
A=| (C1/Cx)Q'[VI,=V3,]  —(Ci/CxQ'[VI—V3]  —(Ci/Cy |, 8
0 1 —Rn,
whereg’ = dg/oV,= — gl dV,, andq=(1,0,0)". control domains, which, our results suggest, may not neces-

As for the one-dimensional system, we determine thesarily be simply connected for some parameter values.

range of parameter values for which the system is stable, that

is, when the eigenvalues of the matrix in E@) have mag- We gratefully acknowledge financial support from The
nitude less than one. The domains of control determined usA/hitaker Foundation, the U.S. Air Force Phillips Laboratory
ing this procedure are shown as solid lines in Figs. 3 and 4under Contract No. F29601-95-K-0058, the U.S. Army Re-
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play a surprising level of complexity in the structure of the 9357234.
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